7 research outputs found

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Multi-Agent Pursuit-Evasion Game Based on Organizational Architecture

    Get PDF
    Multi-agent coordination mechanisms are frequently used in pursuit-evasion games with the aim of enabling the coalitions of the pursuers and unifying their individual skills to deal with the complex tasks encountered. In this paper, we propose a coalition formation algorithm based on organizational principles and applied to the pursuit-evasion problem. In order to allow the alliances of the pursuers in different pursuit groups, we have used the concepts forming an organizational modeling framework known as YAMAM (Yet Another Multi Agent Model). Specifically, we have used the concepts Agent, Role, Task, and Skill, proposed in this model to develop a coalition formation algorithm to allow the optimal task sharing. To control the pursuers\u27 path planning in the environment as well as their internal development during the pursuit, we have used a Reinforcement learning method (Q-learning). Computer simulations reflect the impact of the proposed techniques

    New Game-Theoretic Convolutional Neural Network Applied for the Multi-Pursuer Multi-Evader Game

    Get PDF
    Pursuit-Evasion Game (PEG) can be defined as a set of agents known as pursuers, which cooperate with the aim forming dynamic coalitions to capture dynamic evader agents, while the evaders try to avoid this capture by moving in the environment according to specific velocities. The factor of capturing time was treated by various studies before, but remain the powerful tools used to satisfy this factor object of research. To improve the capturing time factor we proposed in this work a novel online decentralized coalition formation algorithm equipped with Convolutional Neural Network (CNN) and based on the Iterated Elimination of Dominated Strategies (IEDS). The coalition is formed such that the pursuer should learn at each iteration the approximator formation achieving the capture in the shortest time. The pursuerā€™s learning process depends on the features extracted by CNN at each iteration. The proposed supervised technique is compared through simulation, with the IEDS algorithm, AGR algorithm. Simulation results show that the proposed learning technique outperform the IEDS algorithm and the AGR algorithm with respect to the learning time which represents an important factor in a chasing game

    Formalization of BPMN Gateways using the DD-LOTOS Formal Language

    Get PDF
    Business Process Model and Notation (BPMN), is a standardized graphical language used for the graphical modeling of business processes. A BPMN model is composed of several small graphs called elements; these elements make it possible to describe the activities, the events, and the interactions between the components of a business process. Among the essential elements of BPMN are gateways, which control the flow of data. However, the big challenge of these gateways is the existence of several interpretations of the same BPMN model containing gateways; this is due to the informal and ambiguous definition. Several works have proposed the formalization of gateways using formal languages such as process algebras, Petri nets, etc. The purpose of this article is to propose a formalization of BPMN gateways using the formal language DD-LOTOS. DDLOTOS is defined on a semantics of true parallelism called maximality semantics and allows to support distribution and temporal constraints. We then propose the verification of certain properties using the UPPAAL model checker. Our approach has been validated through a case study representing the online purchasing process

    SLAM for Humanoid Multi-Robot Active Cooperation Based on Relative Observation

    No full text
    The simultaneous localization and mapping (SLAM) of robot in the complex environment is a fundamental research topic for service robots. This paper presents a new humanoid multi-robot SLAM mechanism that allows robots to collaborate and localize each other in their own SLAM process. Each robot has two switchable modes: independent mode and collaborative mode. Each robot can respond to the requests of other robots and participate in chained localization of the target robot under the leadership of the organiser. We aslo discuss how to find the solution of optimal strategy for chained localization. This mechanism can improve the performance of bundle adjustment at the global level, especially when the image features are few or the results of closed loop are not ideal. The simulation results show that this method has a great effect on improving the accuracy of multi-robot localization and the efficiency of 3D mapping
    corecore